Patent Search

 
 

Method of calibrating an ultrasonic flow meter

Abstrict

A method of calibrating an ultrasonic flow meter (10) first determines a static flow offset (52). Next, a dynamic flow offset (54) and a flow speed (56) are determined. An adjusted flow speed (58) is determined by subtracting the static flow offset and one half the dynamic flow offset from the flow speed to form an adjusted flow speed.

Claims

What is claimed is:

1. A method of calibrating an ultrasonic flow meter, comprising the steps of:

(a) measuring a flow speed in a forward flow situation under a flowing condition, to form a forward flow speed;

(b) measuring a flow speed in a reverse flow situation under the flowing condition, to form a reverse flow speed;

(c) adding the forward flow speed to the reverse flow speed to form the dynamic flow offset.

2. The method of claim 1 further including the steps of:

(d) subtracting one half the dynamic flow offset from a measured flow speed to form an adjusted flow rate;

(e) determining a volume flow rate using the adjusted flow rate.

3. The method of claim 1 wherein step (a) comprises the steps of:

(a1) measuring a plurality of flow speeds;

(a2) averaging the plurality of flow speeds to form the forward flow speed.

4. The method of claim 1 wherein step (b) comprises the steps of:

(b1) measuring a plurality of flow speeds;

(b2) averaging the plurality of flow speeds to form the reverse flow speed.

5. The method of claim 1 wherein step (a) further includes the step of determining a static flow offset and subtracting the static flow offset from the flow speed to determine the forward flow speed.

Description

FIELD OF THE INVENTION

The present invention relates generally to the field of ultrasonic flow meters and more particularly to a method of calibrating an ultrasonic flow meter.

BACKGROUND OF THE INVENTION

Ultrasonic flow meters have many advantages over other methods of determining flow rates. Ultrasonic flow meters can continuously measure the flow rate, while other methods generally measure average flow rates. In addition, ultrasonic flow meters are obstructionless and work with non-conductive fluids.

Ultrasonic flow meters have a pair of transducers that are placed on either side of the flow path of a fluid flowing through a conduit. The transducers are pointed at each other and placed on either side of the flow path of a fluid flowing through a pipe. The line between the transducers has a component in the direction of the fluid flow. The principle used to detect flow rates is that the transit time of an ultrasonic packet will increase in the upstream and decrease in the downstream path. The amount by which the transit time changes is directly proportional to the flow rate. It is well known that ultrasonic flow meters have fixed offsets. Normally the offset is measured by having the ultrasonic flow meter measure the flow rate with no fluid flow through the meter. The meter should read zero so any reading is an offset that is subtracted from all future readings. This process is performed manually by adjusting a potentiometer. Unfortunately, the offset can drift over time, especially in the case of clamp-on transducers. In addition, this technique only compensates for static (no-flow) offsets and does not take into account offset that occur when a fluid is flowing through the meter.

Thus there exists a need for a calibration method that can automatically detect both static and dynamic offsets in an ultrasonic flow meter and compensate for both offsets.

SUMMARY OF THE INVENTION

A method of calibrating an ultrasonic flow meter that overcomes these and other problems first determines a static flow offset. Next, a dynamic flow offset and a flow speed are determined. An adjusted flow speed is determined by subtracting the static flow offset and one half the dynamic flow offset from the flow speed to form an adjusted flow speed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an ultrasonic flow meter attached to a conduit;

FIG. 2 is a flow chart of a process of calibrating an ultrasonic flow meter;

FIG. 3 is a flow chart of a process of determining a static offset in an ultrasonic flow meter; and

FIG. 4 is a flow chart of a process of determining a dynamic offset in an ultrasonic flow meter.

DETAILED DESCRIPTION OF THE DRAWINGS

An ultrasonic flow meter 10 attached to a conduit 12 having a fluid flowing through it is shown in FIG. 1. The ultrasonic flow meter has a pair of transducers 14 16. The pair of transducers 14 16 are coupled to the decoding electronics 18 that generates and detects an ultrasonic pulse. A microprocessor 20 controls the decoding electronics 18 and performs all the necessary calculations to calibrate the ultrasonic flow meter. A series of computer instruction and data are stored in a memory 22 that is coupled to the microprocessor 20. A display 24 is also coupled to the microprocessor 20.

The process of calibrating an ultrasonic flow meter involves detecting any fixed offsets in the meter and removing these offsets. FIG. 2 is an embodiment of a process for detecting and eliminating any fixed offsets from an ultrasonic flow meter. This process can be stored as computer instruction in the memory 22 and executed by the microprocessor 20. The process starts, step 50 by determining the static flow offset at step 52. The dynamic flow offset is determined at step 54. The dynamic flow offset is determined by measuring the offset when fluid is flowing through the ultrasonic flow meter. A flow speed (measured flow speed) is measured at step 56. An adjusted flow speed is determined by subtracting the static flow offset and one half the dynamic flow offset from the flow speed at step 58 which ends the process at step 60. In another embodiment the adjusted flow speed is then used to determine a volume flow rate. The volume flow rate is the measurement that interests the customer. The adjusted flow speed is just the line integral of the speed of the fluid at each point along the line between the two transducers. As a result this has to be converted to the volume flow rate. A number of different methods exist to determine the volume flow rate from the adjusted flow rate. The invention contemplates using any of these different methods.

FIG. 3 is a flow chart of a process for determining the static offset. The process starts, step 70 by stopping a flow of a fluid through the ultrasonic flow meter at step 72. Next, a number of static offsets are measured at step 74. The static offset is measured by having the ultrasonic flow meter determine a flow speed in a no-flow situation. Since the fluid is not flowing, any measured flow rate is due to the static offset. In one embodiment the ultrasonic flow meter continuously measures a plurality of static offsets (plurality of flow speeds) for a static averaging period. The plurality of static offsets are averaged at step 76 which ends the process at step 78. By averaging the static offsets, the variable errors (noise) in the measurement tend to go to zero, since the variable errors should be just as likely to be positive as negative.

FIG. 4 is a process for measuring a dynamic offset. The process starts, step 90 by measuring a forward flow speed at step 92 under a flowing condition. A forward flow speed is measured by making the transducer 16 (see FIG. 1) a transmit transducer when measuring the downstream transit time and making the transducer 14 the transmit transducer when measuring the upstream transit time. Using these two transit times a flow speed is calculated for a forward flow situation. Next, the reverse flow speed is measured at step 94. The reverse flow speed is measured by making the transducer 14 the transmit transducer when measuring the downstream transit time and making the transducer 16 the transmit transducer when measuring the upstream transit time. The dynamic flow offset is then calculated as the sum of the forward flow speed and the reverse flow speed at step 96 when ends the process, step 98. When there is no dynamic flow offset, the sum of the forward flow speed and the reverse flow speed is zero. This because the reverse flow speed has the same magnitude but the opposite sign as the forward flow speed. The dynamic offset is divided by two, because the offset in the forward flow speed adds to the offset of the reverse flow speed. As in the static case a plurality of flow speeds can be measured for both the forward flow situation and the reverse flow situation. Then if the plurality of flow speeds are averaged the random variations in the measurements tends toward zero. Since the dynamic offset can be calculated with the fluid flowing, the dynamic offset can be periodically recalculated while the ultrasonic flow meter is in use.

Thus there has been described a process for calibrating an ultrasonic flow meter that compensates for both dynamic and static offsets. While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alterations, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alterations, modifications, and variations in the appended claims.


Retrievable downhole flow meter
Capacitative electromagnetic flow meter
Ultrasonic flow meter with reduced noise
Coriolis mass flow meter having a thick-walled measuring tube
Detector for an ultrasonic flow meter
Karman vortex flow meter
Coriolis mass flow meter employing non-metallic flow conduit structure
Fluidic volumetric fluid flow meter
Electromagnetic flow meter
Fluid flow meter utilizing pressure sensing
Air flow meter
Fluid flow meter
Liquid flow meter construction
Positive displacement flow meter method and apparatus
Magnetic-inductive flow meter with a measuring tube made of plastic


PAT. NO. Title
6490933 Ultrasonic flow meter with reduced noise
6404344 Method of compensating for erroneous reading in a mass flow meter
6386030 Balanced bridge temperature regulator for an air-mass flow meter
6357293 Air flow meter with heat generating resistor
6354275 Thermal air flow meter
6354150 Sensor for a capillary tube of a mass flow meter
6345540 Fluid flow meter
6345538 Dual chamber ultrasonic flow meter with membranes having equal pressure on opposite sides thereof
6345536 Multiple-phase flow meter
6336370 Coriolis mass flow meter with thick wall measuring tube
6260420 Inductive flow meter signal line and electrode arrangement
6250167 Removable radio frequency sensor assembly for a turbine flow meter
6250151 Fluid flow meter incorporating magnetic detector
6244115 Flow meter for monitoring liquid flow at low or intermittent rates
6220090 Air flow meter
6212959 Hydration insuring system comprising liquid-flow meter
6209402 Measuring element, mass air flow meter therewith and compensating method for accurately measuring air flow
6158290 Mass flow meter
6119529 Fluid flow meter and corresponding flow measuring methods
6079279 Suspended-body flow meter
6065351 Flow rate measurement method and ultrasonic flow meter
6063034 Blood flow meter apparatus and method of use
6055868 Ultrasonic flow meter
RE36658 Fluid flow meter
6041665 Mass flow meter which operates according to the coriolos principle
RE36597 Apparatus and method for measuring two- or three-phase fluid flow utilizing one or more momentum flow meters and a volumetric flow meter
6032541 Suspended body flow meter
6032528 Flow meter having cylinders with freely movable pistons therein
RE36376 Stability coriolis mass flow meter
5974897 Ultrasonic flow meter
5965800 Method of calibrating an ultrasonic flow meter

Copyright © 2006 - 2015 Patent Information Search