Patent Search
 
Hair Loss Patent

Use of medicago saponins for the preparation of cosmetic or pharmaceutical compositions, especially dermatological compositions, promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss

Hair loss abstract


The invention relates to the use of Medicago saponins for the preparation of cosmetic or pharmaceutical compositions. The invention provides for the incorporation of 0.01% to 5% by weight of a saponin or a corresponding sapogenin, or a plant extract in which it is present, originating in particular from lucerne leaves or roots. The invention makes it possible to promote renewal of the epidermis, stimulate hair regrowth or delay hair loss, or else to combat the effects of ageing on the state of the skin and scalp, as is evident from the FIGURE.

Hair loss claims


We claim:

1. A method for promoting hair growth, combating seborrheic alopecia, and delaying hair loss, comprising the topical application on the desired area to be treated comprising hair, and scalp, an amount effective for achieving said topical treatment of an active ingredient consisting essentially of at least one Medicago component selected from the group consisting of Medicago triterpene saponins, the corresponding sapogenins, Medicago plant extracts containing at least one of said triterpene saponins, and Medicago plant extracts containing at least one of said sapogenins.

2. The method of claim 1, wherein said method is for promoting eye lash growth.

3. The method according to claim 1 wherein the Medicago component is at least partially incorporated into a hydrated lipidic lamellar phase or into liposomal vesicles.

4. The method according to claim 1 wherein the Medicago component is obtained by extraction from a Medicago plant part selected from the group consisting of aerial parts and roots.

5. The method according to claim 1 wherein the sapogenin and Medicago plant extract are obtained from calluses obtained by the in vitro culture of tissue of Medicago.

6. The method according to claim 1 wherein the saponin is a saponin containing a carboxyl group.

7. The method according to claim 1 wherein the Medicago plant extract is obtained from a Medicago plant selected from the group consisting of Medicago satira, Medicago lupulina, Medicago truncatula, Medicago laciniata, Medicago littoralis, Medicago falcata, Medicago media, Medicago minima, Medicago varia, Medicago arborea and Medicago romanica.

8. The method according to claim 1 wherein the Medicago plant extract is obtained from a Medicago plant part in dry form, by contacting said Medicago plant part in dry form with a solvent selected from the group consisting of water, alcohols containing from 1 to 4 carbon atoms, and organic esters containing from 3 to 6 carbon atoms, and a mixed solvent based on a mixture of said solvents.

9. The method according to claim 7 wherein the extraction solvent is selected from the group consisting of methanol, ethanol, a methanol/water mixture, or an ethanol/water mixture.

10. The method according to claim 1 wherein a mixture of saponins is used and wherein the mixture is obtained by precipitation of the plant extract on an apolar solvent.

11. The method according to claim 10 wherein the apolar solvent is miscible with the extraction solvent.

12. The according to claim 10 wherein the mixture of saponins is subjected to a treatment converting to the acid form those saponins which contain a carboxyl group as a salt.

13. The method according to claim 1 wherein the sapogenins are obtained from the saponins by hydrolysis of the glycosidic linkages of the saponins.

14. The method according to claim 13 wherein the hydrolysis is an acid hydrolysis.

15. The method according to claim 14 wherein the above-mentioned sapogenin is selected from the group consisting of lucernic acid, medicagenic acid, zanhic acid, bayogenin, hederagenin and soyasapogenols A, B, C and E.

16. The method according to claim 3 wherein the above-mentioned saponin is introduced into the aqueous phase of the hydrated lipidic lamellar phase or the liposomes at a concentration of between 0.01% and 5% by weight, based on the total weight of said aqueous phase.

17. The method according to claim 3 wherein the sapogenin is incorporated into the lipidic phase of the hydrated lamellar phase or the liposomes at a concentration of between 0.01% and 30% by weight of said lipidic phase.

18. The method according to claim 17 wherein the sapogenin is incorporated at a concentration of between 0.01% and 10% by weight of this lipidic phase.

19. The method according to claim 4, wherein said aerial part is selected from the group consisting of leaves and stems.

20. A method according to claim 5, wherein said calluses are obtained by the in vitro culture of root tissues of a Medicago plant.

21. The method according to claim 8, wherein said Medicago plant extract is obtained from Medicago plant roots.

22. The method according to claim 14, wherein said hydrolysis comprises using as an acid a halogen-containing acid.

23. The method according to claim 22, wherein said halogen-containing acid is selected from the group consisting of perchloric acid, fluoboric acid and trifluoroacetic acid.

Hair loss description

The present invention relates essentially to the use of Medicago saponins or corresponding sapogenins for the preparation of cosmetic or pharmaceutical compositions, especially dermatological compositions, intended in particular for promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss, and for combating the effects of ageing on the state of the skin and scalp.

The plants of the genus Medicago, often designated by the generic term "lucernes", are Leguminosae which are widespread on the planet in temperate zones and in certain arid regions, either in the wild state or in the cultivated state as animal fodder.

Medicago sativa or alfalfa, correctly called lucerne, is the principal representative of this family. By plants of the genus Medicago are present on the five continents, especially in France, in the mediterranean basin, in the United States, in Canada and in Australia. The following may be mentioned among the other Medicago species: M. lupulina (Canada), M. truncatula (Australia, South Africa), M. laciniata (arid and semi-arid zones of Australia, Saudi Arabia, Libya), M. littoralis (Australia), M. minima (Algeria), M. falcata (USSR, Canada), M. media (Alaska) and M. arborea (Greece).

The lucernes contain a large variety of substances useful for feeding animals and humans, especially proteins, vitamins, carotenoids and mineral salts (J. G. COORS et al., Crop Science, 1986, vol. 26, no. 5, p. 843-848; E. M. BICKOFF et al. in Alfalfa Science and Technology, ed. C. H. HANSON, published by The American Society of Agronomy, Madison, Wis., USA, 1972, p. 247-282). The leaves and especially the roots also contain glycosylated compounds consisting essentially of triterpene saponins described in particular by G. MASSIOT et al., J. Chem. Soc. Perkin Trans. I (1988) p. 3071-3079. Hydrolysis of the glycosidic linkages of these saponins yields the corresponding triterpene sapogenins, the most abundant of which is medicagenic acid (G. Massiot et al., J. Agric. Food Chem., 1988, vol. 36, p. 902-909). Finally, sterol glycosides, present in very small amounts, have been identified by S. ITO et al., Nippon Nogei Kagaku Kaishi 1973, vol. 47, no. 3, p. 229-230, in particular beta-sitosteryl glucoside and stigmasteryl glucoside.

A number of therapeutic uses of extracts or substances extracted from lucerne--Medicago sativa--have been described.

Thus it has been recommended to administer lucerne sap in order to treat avitaminosis and decalcification (Aldo Poletti, "Fleurs et Plantes medicinales" ("Medicinal Flowers and Plants"), ed. Delachaux and Niestle, p. 126) and the seed extract has been described in the document SU-624 634 as possessing an antiinflammatory activity. Also, a lucerne extract has been described in the document FR-2 571 256 as possessing an estrogenic activity, its application being in the treatment of cellulitis. The above-mentioned medicagenic acid possesses a hemolytic activity (B. GESTETNER et al., Experientia, 1971, 27(1), 40-41) and an antifungal activity (DE-3 717 280).

Finally, the use in cosmetics of the sterol glucosides present in the leaves has been described in the document JP-62-72 604 as promoting hydration of the skin.

The above-mentioned effects of ageing on the skin are characterized in particular by a slowing-down of the cell differentiation of the epidermis, especially the keratinocytes, leading to a slowing-down of their renewal and their activity, which gives the skin a duller, dry and more wrinkled appearance. Ageing also has adverse effects on the hair follicles. For the keratinocytes of the follicles, as for those of the epidermis, these effects cause a reduction in activity, leading to a slowing-down of hair growth and, ultimately, a degeneration of the follicle and the definitive loss of the hair.

One object of the present invention is to solve the novel technical problem which consists in providing a novel formulation of a cosmetic or pharmaceutical composition, especially a dermatological composition, which is effective in respect of renewal of the epidermis, hair regrowth and the prevention or slowing-down of hair loss, as well as in combating the effects of ageing on the state of the skin and scalp.

A further object of the present invention is to solve this novel technical problem in a particularly simple manner which can be used on the industrial scale.

The present invention makes it possible to solve this technical problem for the first time in a satisfactory manner which can be used on the industrial scale.

Thus, according to a first feature, the present invention relates to the use of at least one Medicago triterpene saponin or at least one corresponding sapogenin, or a plant extract in which it is present, for the manufacture of a cosmetic or pharmaceutical composition, especially a dermatological composition, intended in particular for promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss, and for combating the effects of ageing on the state of the skin and scalp.

In one particular variant, the above-mentioned saponin and plant extract are obtained by extraction from aerial parts, such as leaves or stems, or roots of Medicago, preferably from roots of this plant. Particularly preferably, the parts of the plant which are used are dried prior to the extraction treatment.

In another variant, the above-mentioned saponin and plant extract are obtained by extraction from calluses obtained by the in vitro culture of tissues of Medicago, in particular from root tissues of this plant, for example by the technique described by BESSON V. et al. in Phytochemistry 1989, vol. 28, no. 5, pages 1379 and 1380.

In one advantageous variant, the above-mentioned saponin is selected from those containing a carboxyl group and is used in the acid form for carrying out the present invention.

In another embodiment, the above-mentioned sapogenin is preferably selected from the group consisting of lucernic acid, medicagenic acid, zanhic acid, bayogenin, hederagenin and soyasapogenols A, B, C and E.

In yet another variant of the invention, the above-mentioned Medicago plant is selected from the group consisting of: Medicago sativa, Medicago lupulina, Medicago truncatula, Medicago laciniata, Medicago littoralis, Medicago falcata, Medicago media, Medicago minima, Medicago varia, Medicago arborea and Medicago romanica.

In yet another particular embodiment of the invention, the above-mentioned plant extract is obtained by the method which is described below by way of indication but without implying any limitation. The dry matter, preferably consisting of Medicago roots, is extracted by means of a solvent selected from the group consisting of: water, alcohols preferably containing from 1 to 4 carbon atoms, and organic esters preferably containing from 3 to 6 carbon atoms, or by means of a mixed solvent based on any mixture of the above-mentioned solvents.

Advantageously, the primary extraction solvent is methanol, ethanol, a methanol/water mixture or an ethanol/water mixture.

The ratio of the plant material to the extraction agent is not critical and will generally be between 1:5 and 1:20 parts by weight.

The above-mentioned primary extraction is effected at temperatures between room temperature and the boiling point of the solvent used for the extraction.

Preferably, the primary extraction is effected under reflux for a period of 2 to 4 h under atmospheric pressure. Also, it is advantageously preceded by cold maceration for 2 to 4 h in the extraction solvent.

When extraction has ended, the solvent phase containing the extract is filtered and then concentrated and/or evaporated to dryness under reduced pressure to give a first, saponin-rich extract according to the invention.

In one particular variant, the use according to the invention relates to a mixture of above-mentioned saponins. A mixture of saponins according to the invention is obtained in particular from the above-mentioned first concentrated or dry extract by the procedure indicated below. The above-mentioned first extract is introduced into and then agitated in an apolar solvent which is preferably miscible with the primary extraction solvent, such as an ether or a ketone of low molecular weight, in particular ethyl or isopropyl ether, acetone or methyl ethyl ketone. The amount by weight of apolar solvent is generally 5 to 100 parts to one part of primary extract. The insoluble material and/or the precipitate formed contains principally a mixture of saponins according to the invention.

Advantageously, the mixture of saponins obtained above is purified by any method accessible to those skilled in the art.

In particular, the above-mentioned insoluble material and/or precipitate is redissolved in about 20 times its weight of water. The aqueous solution is then extracted 3 to 4 times with a sparingly water-soluble alcohol, such as butanol, saturated with water, for example in proportions of 1/1 by volume for each extraction operation. The alcohol phases are combined and evaporated under reduced pressure. The residue is dissolved in about 10 times its weight of water and the solution is then dialyzed against pure water for 4 to 5 days. The contents of the dialysis cell are lyophilized. If it is appropriate to further improve the purification of the mixture of saponins obtained, the lyophilizate is dissolved in methanol and then discharged into ethyl ether. The precipitate formed is collected.

Advantageously, the mixture of saponins obtained is subjected to an additional treatment consisting for example in passing an aqueous solution of said mixture over an acid cation exchange resin and then eluting it with water or a methanol/water mixture, the purpose of said additional treatment being to convert to the acid form those saponins which contain a salified carboxyl group.

The above-mentioned sapogenins according to the invention are preferably obtained from the saponins extracted by the method described above. This is done by hydrolyzing the glycosidic linkages of said saponins. Advantageously, acid hydrolysis is carried out, especially with halogen-containing acids such as perchloric acid, fluoboric acid or trifluoroacetic acid, in the manner described for example in the publication by G. Massiot et al. in Journal of Agricultural and Food Chemistry 1988, vol. 36, p. 902-909.

In another advantageous variant of the invention, the above-mentioned saponin or the above-mentioned corresponding sapogenin, or the above-mentioned lucerne extract, is at least partially incorporated into a hydrated lipidic lamellar phase or into vesicles of the liposome type.

The term "lipidic" in the expression "lipidic lamellar phase" covers all substances comprising a so-called fatty hydrocarbon chain generally containing more than 5 carbon atoms, this substance usually being called a "lipid".

According to the invention, the lipids used to form the lipidic lamellar phase or the vesicles of the liposome type are amphiphilic lipids, i.e. lipids consisting of molecules possessing a hydrophilic group, which can equally well be ionic or non-ionic, and a lipophilic group, these amphiphilic lipids being capable of forming a lipidic lamellar phase or vesicles of the liposome type, in the presence of an aqueous phase, according to the amount of water in the mixture.

The following may be mentioned in particular among these lipids: phospholipids, phosphoaminolipids, glycolipids, polyoxyethyleneated fatty alcohols and optionally polyoxyethyleneated polyol esters. Such substances consist for example of an egg or soya lecithin, a phosphatidylserine, a sphingomyelin, a cerebroside, a glycosyl ceramide or an oxyethyleneated polyglycerol stearate.

It is preferred according to the invention to use a lipid mixture consisting of at least one amphiphilic lipid and at least one hydrophobic lipid such as a sterol like cholesterol or beta-sitosterol. The amount of hydrophobic compounds, expressed by weight, must not generally exceed the amount of amphiphilic lipids and preferably must not exceed 0.5 times this amount.

In one preferred variant, the above-mentioned saponin is introduced into the aqueous phase of the hydrated lipidic lamellar phase or the liposomes at a concentration of between 0.01% and 5% by weight, based on the total weight of said aqueous phase.

In yet another preferred variant, the above-mentioned sapogenin is incorporated into the lipidic phase of the hydrated lipidic lamellar phase or the liposomes at a concentration preferably of between 0.01% and 30% by weight of said lipidic phase. In this case, it is not generally necessary to add another hydrophobic constituent, such as a sterol, to the lipidic phase. The above-mentioned concentration is particularly preferably between 0.01% and 10% by weight of this lipidic phase.

The incorporation of the above-mentioned saponins or sapogenins or the above-mentioned extracts according to the invention into hydrated lipidic lamellar phases or into liposomes can be carried out by the known preparative techniques described for example in the document EP-B1-0 087 993=U.S. Pat. No. 4,508,703, if appropriate in combination with the document EP-B1-0 101 559=U.S. Pat. No. 4,621,023.

According to a second feature, the present invention further relates to a cosmetic or pharmaceutical composition, especially a dermatological composition, intended in particular for promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss, and for combating the effects of ageing on the state of the skin and scalp, which composition comprises, as the active ingredient, an effective amount of at least one Medicago triterpene saponin or at least one corresponding sapogenin, or at least one plant extract in which it is present, if appropriate in a cosmetically or pharmaceutically acceptable excipient, carrier or vehicle.

Preferably, the above-mentioned saponin, the above-mentioned sapogenin or the above-mentioned extract is obtained from aerial parts, such as leaves or stems, or roots of Medicago, preferably from roots of this plant.

Diverse variants of the composition are clearly apparent from the above description relating to the use.

In particular, the above-mentioned saponin or sapogenin or the above-mentioned plant extract can advantageously be at least partially incorporated into hydrated lipidic lamellar phases or into vesicles of the liposome type.

Furthermore, in one advantageous variant, the concentration of above-mentioned saponin or sapogenin or above-mentioned plant extract is preferably between 0.001% and 5% and particularly preferably between 0.01 and 2% by weight, based on the total weight of the cosmetic or pharmaceutical composition.

These proportions are understood as being by dry weight where plant extracts are concerned.

In another advantageous variant of the invention, the cosmetic or pharmaceutical composition, especially the dermatological composition, according to the invention also comprises an effective concentration of at least one other active substance selected from xanthines, vitamins, in particular vitamins A, B and E, tyrosine or its derivatives, for example glucose tyrosinate and malyltyrosine, quinine or its derivatives, rubefacients such as methyl nicotinate, a papilla fibroblast culture supernatant such as that described in the document EP-A-272 920, keratin hydrolyzates, trace elements such as zinc, selenium and copper, 5-.alpha.-reductase inhibitors such as: progesterone, cyproterone acetate and Minoxidil.RTM., azelaic acid and its derivatives, a 1,4-methyl-4-azasteroid, in particular 17-.beta.-N,N-diethylcarbamoyl-4-methyl-4-aza-5-.alpha.-androstan-3-one, or else an extract of Serenoa repens. Advantageously, this active substance can be at least partially incorporated into hydrated lipidic lamellar phases or into vesicles of the liposome type.

The cosmetic or pharmaceutical compositions, especially the dermatological compositions, according to the present invention can be applied topically, in particular for promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss, and for combating the effects of ageing on the state of the skin and scalp, in particular in compositions presented in the form of creams, gels or lotions for topical application.

Within this feature, the present invention further provides a method of treating the epidermis, intended especially for promoting its renewal, or a method of treating the hair, intended for promoting its regrowth or delaying its loss, which method comprises the topical application, in an amount effective for achieving said desired effect, of at least one Medicago saponin or at least one corresponding sapogenin, or a plant extract in which it is present. In one advantageous variant, said above-mentioned saponin or sapogenin or said plant extract is at least partially incorporated into a hydrated lipidic lamellar phase or into vesicles of the liposome type.

It should be noted that, in the present description and in the claims, the expression "at least partially into hydrated lipidic lamellar phases or into vesicles of the liposome type" is understood as meaning that the above-mentioned active ingredient is combined with hydrated lipidic lamellar phases or with vesicles of the liposome type, whatever form this combination may take.

However, it is clear that such a combination can constitute incorporation or even encapsulation in the hydrated lipidic lamellar phases or in the vesicles of the liposome type, although it is not necessary for all this active ingredient to be incorporated or encapsulated in order to obtain the desired effect, especially on the epidermis and on the scalp.

According to another feature, the invention further provides a method of manufacturing a cosmetic or pharmaceutical composition, especially a dermatological composition, intended in particular for promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss, and for combating the effects of ageing on the state of the skin and scalp, which method comprises using at least one Medicago saponin or at least one corresponding sapogenin, or a plant extract in which it is present, and mixing it with a pharmaceutically or cosmetically acceptable excipient, vehicle or carrier. In one variant, this method comprises firstly at least partially incorporating at least one above-mentioned saponin or at least one corresponding sapogenin, or a plant extract in which it is present, into hydrated lipidic lamellar phases or into vesicles of the liposome type and then mixing them with a pharmaceutically or cosmetically acceptable excipient, vehicle or carrier.

Other objects, characteristics and advantages of the invention will become clearly apparent from the following explanatory description referring to several Examples which are given solely by way of illustration and which consequently cannot limit the scope of the invention in any way.

BRIEF DESCRIPTION OF THE DRAWING

The accompanying single FIGURE reports test results on the pilary cycle of Sprague Dawley rats with the percentage of hairs in anagenetic phase comprising the Y-axis as a function of the number of days on the X-axis as reported in detail in Example 13, the curve joining the squares corresponding to the results obtained with the mixture of saponins extracted from lucerne roots, of Example 2, according to the invention, the curve joining the crosses being obtained with the excipient and finally the curve joining the dots being obtained with the control group not receiving any product.

In the Examples, the percentages are expressed by weight, unless indicated otherwise. In the case of extracts, the percentages are expressed by dry weight of the extract.


Photodynamic therapy for the treatment of hair loss
Nutrient composition for preventing hair loss
Compositions and methods for treating hair loss using oximyl and hydroxylamino prostaglandins

7090691 Photodynamic therapy for the treatment of hair loss
7041636 Composition for counteracting hair loss
6762193 Method of treating hair loss
6680344 Method of treating hair loss using diphenylmethane derivatives
6653317 Pyrimidine 3-oxide compounds for inducing/stimulating hair growth and/or retarding hair loss
6646005 Method of treating hair loss using sulfonyl thyromimetic compounds
6541507 Indolecarboxylic compounds for inducing/stimulating hair growth and/or retarding hair loss
6525094 Method of treating hair loss using diphenylether derivatives
5728714 Method for treating hair loss using tempo
5723149 Use of medicago saponins for the preparation of cosmetic or pharmaceutical compositions, especially dermatological compositions, promoting renewal of the epidermis, stimulating hair regrowth or delaying hair loss
5665335 Combinations of vasoactive substances with fatty acids to prevent hair loss
5650145 Dermatological/cosmetic compositions comprising antifungal and antibacterial compounds and reduction of hair loss therewith
5610302 Composition intended for use for retarding hair loss and for inducing and stimulating its growth, containing 2-aminopyrimidine 3-oxide derivatives, and new compounds derived from 2-aminopyrimidine 3-oxide
5607693 Cosmetic or pharmaceutical composition, especially dermatological composition, containing oxyacanthine, intended in particular for stimulating hair growth or retarding hair loss
5607479 Hair loss replacement method and system
5595564 Device for retarding hair loss and for stimulating its regrowth
5585386 .alpha.-pyrone compositions for inducing/stimulating hair growth and/or retarding hair loss
5567701 Alkylpolyglycoside and pyrimidine derivative based composition for inducing and stimulating hair growth and/or reducing hair loss
5470876 Topical sod for treating hair loss
5466694 Compositions for slowing down hair loss and for inducing and stimulating its growth, based on 24-diamino-pyrimidine 3-oxide derivatives, and new 24-diaminopyrimidine 3-oxide derivatives
5438058 Composition intended to be used for retarding hair loss and for inducing and stimulating hair growth, containing 2-alkyl-4-aminopyrimidine (or 24-dialkylpyrimidine) 3-oxide derivatives and new compounds derived from 2-alkyl-4-aminopyrimidine 3-oxide
5431881 Treatment of hair loss and dermatological problems
5376373 Method of inhibiting radiation induced weight and hair loss
5328914 Use of pyrimidine 3-oxide derivatives for slowing down hair loss and topical compositions used
5215760 Saturated solution of purified sodium chloride in purified aloe vera for inducing and stimulating hair growth and for decreasing hair loss

  Copyright © 2006 - 2015 Patent Information Search