Patent Information Search
 
Machine Tools Patent
 

Device for receiving and separating chips created by machine tools and coolant (overflow)

Machine tools abstract

A device is disclosed for receiving and separating chips and coolant collecting on machine tools, the coolant being returned for reuse and the chips being removed, having a receiving tank (1) to receive the chips and the coolant, a rising guide section (3) adjoining the receiving tank (1), an elevated discharge section (4) adjoining the guide section (3), a chain-like closed transport element, which, at least in the region receiving the chips and the coolant and in the discharge section (4), is guided over deflection elements (6 7), at least one of which is coupled to a rotary drive, and a rotatably mounted filter drum (12), which is in drive connection with the transport element. A suggestion is made for preventing unfiltered coolant from penetrating the tanks for filtered coolant in the event the receiving tank overflows.This is achieved in that holders (12), whose projecting ends, which are directed downward, extend into an overflow channel (10), are tightly attached externally to the wall of the receiving tank (1) the overflow channel (10) is guided around the device at a level below the top edge (2) of the receiving tank (1) and is removably held on the holders (12), the overflow channel (10) tightly covers tanks (22) located beneath it having filtered coolant, the inner edge (15) of the overflow channel (10) neighboring the receiving tank (1) lies at a higher level than the outer edge (16) of the overflow channel (10), which is further away from the receiving tank (1), and at least one outlet device (17) is provided in the bottom region of the overflow channel (10).

Machine tools claims

What is claimed is:

1. A device for receiving and separating chips and coolant fluid collection on machine tools, the coolant being returned reuse and the chips being removed, comprising: a receiving tank to receive the chips and coolant; a rising guide section adjoining the receiving tank; an elevated discharge section adjoining the guide section; a chain-like closed transport element, which, at least in the region receiving the chips and the coolant in the discharge section, is guided over at least first and second deflection elements, at least one of which is coupled to a rotary drive; and a rotatably mounted filter drum, which is in drive connection with the transport element, wherein: holders, whose projecting ends, which are directed downward, extend into an overflow channel, are tightly attached externally to the wall of the receiving tank; the overflow channel is guided around the device at a level below the upper edge of the receiving tank and is removably held by the holders; the overflow channel tightly covers the tanks located beneath it having filtered coolant; the inner edge of the overflow channel neighboring the receiving tank lies at a higher level than the outer edge of the overflow channel, which is further away from the receiving tank; and at least one outlet device is provided in the bottom region of the overflow channel.

2. The device according to claim 1 wherein the overflow channel comprises a U-shape.

3. The device according to claim 1 or 2 wherein the outlet device comprises a screen which is fixed on the edge of an opening in the bottom of the overflow channel.

4. The device according to claim 3 wherein a cover is provided over the screen which leaves the flow to the screen free and which may be stepped on.

5. The device according to claim 4 wherein the maximum pass-through volume flow of the outlet device may be smaller than or equal to the maximum overflow volume flow.

6. The device according to claim 3 wherein the maximum pass-through volume flow of the outlet device may be smaller than or equal to the maximum overflow volume flow.

7. The device according to claim 3 wherein the filter properties of the screen correspond to those of a filter cloth which is used in the filter drum.

8. The device according to claim 7 wherein a cover is provided over the screen which leaves the flow to the screen free and which may be stepped on.

9. The device according to claim 8 wherein the maximum pass-through volume flow of the outlet device may be smaller than or equal to the maximum overflow volume flow.

10. The device according to claim 7 wherein the maximum pass-through volume flow of the outlet device may be smaller than or equal to the maximum overflow volume flow.

11. The device according to one of claim 1 or 2 wherein the maximum pass-through volume flow of the outlet device may be smaller than or equal to the maximum overflow volume flow.

Machine tools description

The present invention relates to a device for receiving and separating chips and coolant collecting on machine tools, the coolant being returned for reuse and the chips being removed, having a receiving tank to receive the chips and the coolant, a rising guide section adjoining the receiving tank, an elevated discharge section adjoining the guide section, a chain-like closed transport element, which, at least in the region receiving the chips and the coolant and in the discharge section, is guided over deflection elements, at least one of which is coupled to a rotary drive, and a rotatably mounted filter drum, which is in drive connection with the transport element.

During the transport of chips and coolant, blockages of the transport paths may not be completely prevented. In addition, the occurrence of the chips and the coolant may be distributed greatly irregularly over time. In turn, a backup of the coolant in the device and therefore also a rise of the coolant may result from this, which may, in the most unfavorable case, have an overflow of the unpurified coolant over the upper edge of the receiving tank as a consequence. Such an overflow may then reach regions which are to be kept clean and containers containing coolant which has already been purified.

The object of the present invention is therefore, in case of such an overflow, to prevent the contamination of regions to be kept clean and of tanks containing coolant which has already been purified and, in addition, to make the overflow situation visually recognizable to the operating personnel.

This object is achieved by a device of the type initially described according to the present invention in that holders, whose projecting ends, which are directed downward, extend into an overflow channel, are tightly attached externally to the wall of the receiving tank; the overflow channel is guided around the device at a level below the upper edge of the receiving tank and is removably held on the holders, the overflow channel tightly covers tanks located beneath it having filtered coolant, the inner edge of the overflow channel neighboring the receiving tank lies at a higher level than outer edge of the overflow channel, which is further away from the receiving tank, and at least one outlet device is provided in the bottom region of the overflow channel.

The overflow channel has a storage volume which may accommodate overflowing contaminated coolant for some time. If this storage volume is not sufficient, an overflow occurs at the outer edge of the channel. The purified coolant located below the channel is protected from recontamination.

According to a further suggestion of the present invention, the overflow channel may be implemented as U-shaped.

According to a further suggestion of the present invention, the outlet device may have a screen which is fixed on the edge of an opening in the bottom of the overflow channel. The filter properties of the screen expediently correspond to those of the filter cloth which is used on the filter drum. In this way, it is ensured that the coolant which passes through the outlet device into a container having purified coolant is of the same degree of purity as the coolant located there, i.e., contamination is avoided.

According to a further suggestion of the present invention, a cover is provided over the screen which leaves the flow to the screen free and which may be stepped on. Therefore, the overflow channel is passable and the screen is protected from stresses which are too high.

Finally, according to a further suggestion of the present invention, the maximum pass-through volume flow of the outlet device(s) may be smaller than or equal to the maximum overflow volume flow.

In the following, an embodiment of the device according to the present invention is described with reference to the drawings.

FIG. 1: shows a side view of a device according to the present invention having an overflow channel,

FIG. 2: shows a top view of the overflow channel shown in FIG. 1

FIG. 2a: shows a top view of the outlet device,

FIG. 2b: shows a section through the outlet device shown in FIG. 2a,

FIG. 3: shows a section along line A/A in FIG. 2 and

FIG. 4: shows a section along line B/B in FIG. 2.

FIG. 5: shows a detail view of the connection between receiving tank and overflow channel.

FIG. 1 shows the side view of an embodiment of the device according to the present invention having a receiving tank 1 which is open on top and receives the chips and coolant collecting on the machine tools. This receiving tank has an overflow edge 2. A rising guide section 3 which transits into an elevated discharge section 4 adjoins the receiving tank. A hinged belt conveyor 5 guided on both sides via rollers, is provided here as a transport element for transporting away the chips present in the coolant. This conveyor is guided around a lower deflection element 6 on the end of receiving tank 1 and runs around an upper deflection element 7 which is coupled to a drive, not shown, in the region of discharge section 4.

The top view of the device is schematically illustrated in FIG. 2 an overflow channel 10 surrounding the entire device. Tanks 22 for receiving purified coolant may be located below overflow channel 10.

FIG. 2a shows an aspect of an outlet device 17 which is inserted into an opening in overflow channel 10. Outlet device 17 includes a retaining plate 19 to which screen 20 and cover 18 are attached. In this case, the filter properties of screen 20 correspond to those of the filter drum. If unfiltered coolant now passes over overflow edge 2 into overflow channel 10 it will reach outlet device 17. The coolant will then run off through screen 20 into tanks 22 located below overflow channel 10 the chips still contained in the coolant being held back by screen 20 so that only filtered coolant reaches tanks 22 located underneath overflow channel 10. Cover 18 has a recess on each of its sides, through which the unfiltered coolant may flow to screen 20 and is used as a foot board.

FIG. 2b shows a section through outlet device 17. It includes retaining plate 19 to the top of which cover 18 is attached. Screen 20 is held on the bottom of retaining plate 19 with the aid of screen attachment frame 21.

FIG. 3 shows a section through the device along line A-A, which runs through rising guide section 3 of the device. In this section, overflow of receiving tank 1 will not occur. Nonetheless, it has been shown to be advantageous to lead overflow channel 10 around the entire device.

FIG. 4 shows a section through the device along line B-B, which runs through receiving tank 1. In this case, top edge 2 of receiving container 1 is simultaneously the lowest edge of receiving tank 1. Therefore, if an overflow of coolant which is not yet been purified occurs, it will occur in this region. Overflowing coolant will then flow on the outside of receiving tank 1 and over the upside-down U-shaped profile into overflow channel 10. Subsequently, it will flow off into tank 22 via outlet device 17 chips contained therein being held back by screen 20. For the case in which the quantity of overflowing coolant is greater than that flowing off through the outlet device, the coolant will first collect in overflow channel 10 and finally flow off over outer leg 16 of overflow channel 10 which has a lower height than inner leg 15 of overflow channel 10 so that in this way it is ensured that unfiltered coolant will not reach tank 22 having filtered coolant in any case.

FIG. 5 shows a detailed view of the connection between receiving tank 1 and overflow channel 10. Holders 12 are welded into the outer wall of receiving tank 1. In the exemplary embodiment, the holders are a upside-down U-shaped profile, whose one leg is welded onto the outer wall of receiving tank 1 and whose outer leg 14 engages in overflow channel 10. Receiving tank 1 is connected to overflow channel 10 using a screw connection via the upside-down U-shaped profile welded onto it. The overflow channel has an inner leg 15 facing the device and an outer leg 16 facing away from the device, height x of the outer leg 16 being selected lower than height y of inner leg 15. This has the consequence that when overflow channel 10 is filled, overflow occurs outward before the filling state possible here is achieved on inner leg 15 of overflow channel 10. Therefore, a seal is not necessary between outer leg 14 of upside-down U-shaped profile 12 and inner leg 15 of U-shaped overflow channel 10.

LIST OF REFERENCE NUMBERS

1 receiving tank 2 overflow edge 3 guide section 4 discharge section 5 hinged belt conveyor 6 lower deflection element 7 upper deflection element 8 - 9 - 10 overflow channel 11 - 12 upside-down U-profile 13 - 14 outer leg of upside-down U-profile 15 inner leg of overflow channel 16 outer leg of overflow channel 17 outlet device 18 cover 19 retaining plate 20 screen 21 screen attachment frame 22 tank for filtered coolant


Method and device for axis control for machine tools and the like
Multiple operator station for machine tools
Pallet with adjustable anchorage system for equipping the clamping fixture of a rough piece to be machined with machine tools
Set of parts for building small machine tools
Position transducer for machine tools and measuring machines
Safety apparatus in connection with work loading device to safe guard machine tools operation

PAT. NO. Title
7035710 Device for automating and/or controlling of machine tools or production machines
7031799 Control structure for the active damping of low-frequency oscillations in numerically controlled machine tools
7014760 Device for receiving and separating chips created by machine tools and coolant (overflow)
6981221 Method and data network for automatically configuring a parameterizing surface of machine tools or production machines
6971595 Self-fed shredder device for shavings-removing machine tools
6945147 Clamping device for machine tools
6905294 Main shaft device for machine tools
6901309 Programming platform for generating parts programs for machine tools or production machines
6860380 Workpiece transfer device for machine tools
6858053 Exhaust system, in particular, for housing-type enclosures of machine tools
6789299 Quick change tooling system for machine tools
6785624 Method for calibrating of machine units located in machine tools or robotic devices
6712299 Self-feeding shredder device for machine tools with swarf removal
6626058 C-axis driving system for machine tools
6609706 Work fixing jig for machine tools
6579047 Guide and support device for small machine tools, in particular for rotating-mass balancing machines
6513410 Tool holder for machine tools and tool system for machine tools
6474914 Tool-driving device, particularly for machine tools
6456222 Sensor signal converter for machine tools and production machines, and also robots
6389873 Tool-holder for machine tools
6349626 Clamping device for machine tools
6344138 Device for regenerating the cooling emulsion stagnating in the tanks of machine tools
6148985 Safety device on metal-forming machine tools
6134996 Tool head for use in machine tools
6105754 Transfer for machine tools
6095727 Working head for numeric-control machine tools

Copyright © 2006 - 2015 Patent Information Search