Patent Information Search
 

Molecular Sieve Patent

 

Molecular sieve layers and processes for their manufacture

Molecular sieve abstract

Layers comprising a molecular sieve layer on a porous or non-porous support, having uniform properties and allowing high flux are prepared from colloidal solutions of zeolite or other molecular sieve precursors (particle size less than 100 nm), by deposition, e.g., by spin or dip-coating, or by in situ crystallization.

Molecular sieve claims

What is claimed is:

1. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a means particle size within the range of from 20 nm to 1 .mu.m, wherein the support is selected from the group consisting of glass, fused quartz, silica, silicon, clay, metal, porous glass, sintered porous metal, titania, and cordierite, and wherein the particle size distribution is such that at least 95% of the particles have a size within .+-.33% of the mean.

2. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 nm to 1 .mu.m, wherein the support is selected from the group consisting of glass, fused quartz, silica, silicon, clay, metal, porous glass, sintered porous metal, titania, and cordierite, and wherein the layer primarily contains nanopores having size of between 1 and 10 nm.

3. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 nm to 1 .mu.m, wherein the support is selected from the group consisting of glass, fused quartz, silica, silicon, clay, metal, porous glass, sintered porous metal, titania, and cordierite, and wherein the layer primarily contains micropores having a size of between 0.2 and 1 nm.

4. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 nm to 1 .mu.m, wherein the support is selected from the group consisting of glass, fused quartz, silica, silicon, clay, metal, porous glass, sintered porous metal, titania, and cordierite, and wherein the layer comprises molecular sieve crystals in a particulate matrix, the pore structure being defined by the interstices between the particles, between the crystals, and between the particles and the crystals, the pore structure advantageously being between 0.2 and 1 nm in size.

5. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles hang a mean particle size within the range of from 20 nm to 1 .mu.m, wherein the layer primarily contains nanopores 1 and 10 nm.

6. A supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 nm to 1 .mu.m, wherein the layer primarily contains micropores having a size of between 0.2 and 1 nm.

7. A layer as claimed in claim 6 wherein the layer comprises molecular sieve crystals in a particular matrix, the pore structure being defined by the interstices between the particles, between the crystals, and between the particles and the crystals.

Molecular sieve description

This invention relates to molecular sieves, more especially to crystalline molecular sieves, and to layers containing them. More especially, the invention relates to a layer, especially a supported layer, containing particles of a crystalline molecular sieve.

Molecular sieves find many uses in physical, physico-chemical, and chemical processes, most notably as selective sorbents, effecting separation of components in mixtures, and as catalysts. In these applications, the crystallographically-defined pore structure within the molecular sieve material is normally required to be open, and it is then a prerequisite that any structure-directing agent, or template, that has been employed in the manufacture of the molecular sieve be removed, usually by calcination.

Numerous materials are known to act as molecular sieves, among which zeolites form a well-known class. Examples of zeolites and other materials suitable for use in the invention will be given below.

When molecular sieves are used as sorbents or catalysts they are often in granular form. Such granules may be composed entirely of the molecular sieve or be a composite of a binder or support and the molecular sieve, with the latter distributed throughout the entire volume of the granule. In any event, the granule usually contains a non-molecular sieve pore structure which improves mass transfer through the granule.

The support may be continuous, e.g., in the form of a plate, or it may be discontinuous, e.g., in the form of granules. The molecular sieve crystals may be of such a size that, although the pores of the support are occupied by the crystals, the pores remain open. Alternatively, the molecular sieve may occupy the pores to an extent that the pores are effectively closed; in this case, when the support is continuous a molecular sieve membrane may result.

Thus, depending on the arrangement chosen and the nature and size of the material to be contacted by the molecular sieve, material may pass through the bulk of the molecular sieve material entirely through the pores of the molecular sieve material, or entirely through interstices between individual particles of the molecular sieve material, or partly through the pores and partly through the interstices.

Molecular sieve layers having the permeation path entirely through the the molecular sieve crystals have been proposed for a variety of size and shape selective separations. Membranes containing molecular sieve crystals have also been proposed as catalysts having the advantage that they may perform catalysis and separation simultaneously if desired.

In EP-A-135069 there is disclosed a composite membrane comprising a porous support, which may be a metal, e.g., sintered stainless steel, an inorganic material, or a polymer, one surface of which is combined with an ultra thin (less than 25 nm) film of a zeolite. In the corresponding U.S. Pat. No. 4699892 it is specifically stated that the zeolite is non-granular. In EP-A-180200 a composite membrane is disclosed, employing a zeolite that has been subjected to microfiltration to remove all particles of 7.5 nm and above. The membrane is made by impregnation of a porous support by the ultrafiltered zeolite solution, resulting in a distribution of the zeolite crystals within the pore structure.

In EP-A-481660 which contains an extensive discussion of earlier references to membranes, there is disclosed a zeolite membrane on a porous support, in which the zeolite crystals are stated to form an essentially continuous layer over and be directly bonded to the support. The membrane is formed by immersing the support in a synthesis gel, multiple immersions being employed to ensure that any pinholes are occluded by the zeolite crystals being formed within the pores.

Zeolites with a small particle size and narrow size distribution are disclosed for use in composite poly-dimethylsiloxane membranes in J. Mem. Sci. 73 (1992) p 119 to 128 by Meng-Dong Jia et al; however, the crystal size, though uniform, is within the range of 200 to 500 nm. Bein et al, in Zeolites, Facts, Figures, Future, Elsevier, 1989 pp 887 to 896 disclose the manufacture of zeolite Y crystals of a size of about 250 nm and embedding them in a glassy silica matrix. Even smaller sizes such as 2 to 10 nm are envisaged in WO 92/19574.

In Zeolites, 1992 Vol. 12 p 126 Tsikoyiannis and Haag describe the formation of membranes from zeolite synthesis gels on both porous and non-porous supports; when the support is non-porous, e.g., poly-tetrafluorethylene or silver, the membrane is separable from the support. When the support is porous, e.g., a Vycor (a trademark) porous glass disk, the membrane is strongly bonded to the surface, zeolite crystallization within the pores being prevented by presoaking the disk in water.

Numerous other techniques for forming membranes have been proposed.

In EP-A-397216 methods of making crack- and pinhole-free alumina films of a thickness within the range of from 0.01 to 2 .mu.m on a porous support layer are described, the methods including brush, spray, dip, spin coating, electrophoretic and thermophoretic techniques. The membranes may be pretreated.

Despite the proposals in these literature and patent references, there still remains a need for a supported inorganic molecular sieve layer having a controllable thickness that may, if desired, be of a thickness of the order of only a few microns. There accordingly also remains a need for a process of manufacturing such a layer whereby the uniformity of the layer thickness may be controlled, even when the layer is thin.

Such a layer and a process for its manufacture make possible the production of a number of useful products, including membranes, which because of their uniformity and thinness will have predictable properties, and will permit a high flux.

It has now been found that such a supported layer is obtainable using as starting material a crystalline molecular sieve of very small particle size, preferably of a size that a true colloidal dispersion of the particles may be obtained, and preferably also of a narrow particle size distribution.

BRIEF DESCRIPTION OF THE FIGURE

FIG. 1 is a Scanning Electron Microscopy ("SEM") image of the cross-section of a silica/zeolite layer manufactured on a porous alpha-alumina support by spin-coating in conjunction with the use of a temporary barrier layer.

FIG. 2 is a SEM image of the cross-section of a silica/zeolite layer manufactured on a porous alpha-alumina support by spin-coating in conjunction without the use of a temporary barrier layer.

FIG. 3 is a SEM image of the cross-section of a silica/zeolite layer manufactured on a alpha-alumina support by spin-coating in conjunction with the use of a permanent barrier layer.

FIG. 4 is a SEM image of the top-view of a silica/zeolite layer manufactured on a alpha-alumina support by spin-coating in conjunction with the use of a permanent barrier layer.

FIG. 5 is a data pilot illustrating the separation properties of a silica/zeolite layer manufactured on a alpha-alumina support by spin-coating in conjunction with the use of a permanent barrier layer as shown in FIGS. 3 and 4. The data plot shows of a relative molar concentrations of the permeate obtained from subjecting the structure to an equimolar mixture of toluene, m-xylene, n-octane, and i-octane.

FIG. 6 is an SEM image of the cross-section of a silica/zeolite layer manufactured on a porous alpha-alumina support by spin-coating in conjunction with the use of a temporary barrier layer and hydrothermal crystallization techniques.

FIG. 7 is a SEM image of the top-view of a silica/zeolite layer manufactured on alpha-alumina support by dipping the support into a silica/zeolite mixture in conjunction with the use of an aging solution and heart treatment.

FIG. 8 is a SEM image of the cross-section of a silica/zeolite layer manufactured on alpha-alumina support by dipping the support into a silica/zeolite mixture in conjunction with the use of an aging solution and heat treatment.

FIG. 9 is an SEM image of an alpha-alumina support surface prior to in-situ formation of zeolite crystals on the support.

FIG. 10 is an SEM image of an alpha-alumina support surface following in-situ formation of zeolite crystals on the support at 150.degree. C. followed by calcining.

FIG. 11 is an SEM image of an alpha-alumina support surface following in-situ formation of zeolite crystals on the support at 98.degree. C. followed by calcining.

FIG. 12 is an SEM image (at 156.times.magnification) of a alpha-alumina support surface following in-situ formation of zeolite crystals on the support at 120.degree. C. followed by calcining.

FIG. 13 is an SEM image (at 10000.times.magnification) of the same alpha-alumina support surface as FIGS. 12 and 14.

FIG. 14 is an SEM image (at 80000.times.magnification) of the same alpha-alumina support surface as FIGS. 12 and 13.

FIG. 15 is an SEM image of a cross-section of a alpha-alumina support surface following in-situ formation of zeolite crystals on the support at 120.degree. C. followed by calcining as shown in FIGS. 12 14.

In a first aspect of the invention, there is provided a layer comprising a supported inorganic layer comprising contiguous particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 nm to 1 .mu.m.

Advantageously, in the first aspect of the invention, the mean particle size is within the range of from 20 to 500 nm, preferably it is within the range of from 20 to 300 nm and most preferably within the range of from 20 to 200 nm. Alternatively, the mean particle size is advantageously such that at least 5% of the unit cells of the crystal are at the crystal surface.

In a second aspect of the invention, there is provided a supported inorganic layer comprising particles of a crystalline molecular sieve, the particles having a mean particle size within the range of from 20 to 200 nm.

In both the first and second aspects of the invention, the layer comprises molecular sieve particles optionally coated with skin of a different material; these are identifiable as individual particles (although they may be intergrown as indicated below) by electron microscopy. The layer, at least after activation, is mechanically cohesive and rigid. Within the interstices between the particles in this rigid layer, there may exist a plethora of non-molecular sieve pores, which may be open, or partially open, to permit passage of material through or within the layer, or may be completely sealed, permitting passage through the layer only through the pores in the particles.

Advantageously, the particle size distribution is such that 95% of the particles have a size within .+-.33% of the mean, preferably 95% are within .+-.15% of the mean, preferably +10% of the mean and most preferably 95% are within .+-.7.5% of the mean.

It will be understood that the particle size of the molecular sieve material forming the layer may vary continuously or stepwise with distance from the support. In such a case, the requirement for uniformity is met if the particle size distribution is within the defined limit at one given distance from the support, although advantageously the particle size distribution will be within the defined limit at each given distance from the support.

The use of molecular sieve crystals of small particle size and preferably of homogeneous size distribution facilitates the manufacture of a three-dimensional structure which may if desired be thin but which is still of controlled thickness.

In the first aspect of the invention, the particles are contiguous, i.e., substantially every particle is in contact with one or more of its neighbours as evidenced by electron microscopy preferably high resolution microscopy, although not necessarily in contact with all its closest neighbours. Such contact may be such in some embodiments that neighbouring crystal particles are intergrown, provided they retain their identity as individual crystalline particles. Advantageously, the resulting three dimensional structure is grain-supported, rather than matrix-supported, in the embodiments where the layer does not consist essentially of the crystalline molecular sieve particles. In a preferred embodiment, the particles in the layer are closely packed.

In the second aspect of the invention, the particles may be contiguous, but need not be.

A layer in accordance with either the first or the second aspect of the invention may be constructed to contain passageways between the particles that provide a non-molecular sieve pore structure through or into the layer. Such a layer may consist essentially of the particles or may contain another component, which may be loosely termed a matrix which, while surrounding the particles, does not so completely or closely do so that all pathways round the particles are closed. Alternatively, the layer may be constructed so that a matrix present completely closes such pathways, with the result that the only path through or into the layer is through the particles themselves.

It will be understood that references herein to the support of a layer include both continuous and discontinuous supports.

References to particle size are throughout this specification to the longest dimension of the particle and particle sizes are as measured by direct imaging with electron microscopy. Particle size distribution may be determined by inspection of scanning or transmission electron micrograph images preferably on lattice images, and analysing an appropriately sized population of particles for particle size.

As molecular sieve, there may be mentioned a silicate, metallosilicates an aluminosilicate, an aluminophosphate, a silicoaluminophosphate, a metalloaluminophosphate, or a metalloaluminophosphosilicate or a gallosilicate.

The preferred molecular sieve will depend on the chosen application, for example, separation, catalytic applications, and combined reaction separation. There are many known ways to tailor the properties of the molecular sieves, for example, structure type, chemical composition, ion-exchange, and activation procedures.

Representative examples are molecular sieves/zeolites of the structure types AFI, AEL, BEA, CHA, EUO, FAU, FER, KFI, LTA, LTL, MAZ, MOR, MFI, MEL, MTW, OFF and TON.

Some of the above materials while not being true zeolites are frequently referred to in the literature as such, and this term will be used broadly in the specification below.

A supported layer according to the invention may be manufactured in a number of different ways. In one embodiment the invention provides a process of making a layer by deposition on a support from a colloidal zeolite suspension obtainable by preparing an aqueous synthesis mixture comprising a source of silica and an organic structure directing agent in a proportion sufficient to effect substantially complete dissolution of the silica source in the mixture at the boiling temperature of the mixture, and crystallization from the synthesis mixture. The synthesis mixture will contain, in addition, a source of the other component or components, if any, in the zeolite.

The particle size of the crystals formed may be controlled by the crystallization temperature, or any other process capable of giving crystals of highly uniform particle size, in a size such that a stable colloidal suspension may be obtained. A stable colloidal suspension is one in which no visible separation occurs on standing for a prolonged period, e.g., one month. Details of the procedure for preparing the colloidal suspension mentioned above are given in our co-pending Application No. PCT/EP92/02386 the entire disclosure of which is incorporated by reference herein.

The invention also provides a supported layer made by the above process.

In accordance with preferred processes according to the invention, the silica is advantageously introduced into the synthesis mixture as silicic acid powder.

The organic structure directing agent is advantageously introduced into the synthesis mixture in the form of a base, specifically in the form of a hydroxide, but a salt, e.g, a halide, especially a bromide, may be employed.

The structure directing agent may be, for example, the hydroxide or salt of tetramethylammonium (TMA), tetraethylammonium (TEA), triethylmethylammonium (TEMA), tetrapropylammonium (TPA), tetrabutylammonium (TBA), tetrabutylphosphonium (TBP), trimethylbenzylammonium (TMBA), trimethylcetylammonium (TMCA), trimethylneo-pentylammonium (TMNA), triphenylbenzylphosphonium (TPBP), bispyrrolidinium (BP), ethylpyridinium (EP), diethylpiperidinium (DEPP) or a substituted azoniabicyclooctane, e.g. methyl or ethyl substituted quinuclidine or 14-diazoniabicyclo-(222)octane.

Preferred structure directing agents are the hydroxides of TMA, TEA, TPA and TBA.

Further processes for the manufacture of layers according to the invention, including specific methods of depositing the molecular sieve on the support and post-treatment of the resulting layer, will be given below.

The thickness of the molecular sieve layer is advantageously within the range of 0.1 to 20 .mu.m preferably 0.1 to 15 .mu.m, more preferably from 0.1 to 2 .mu.m. Advantageously, the thickness of the layer and the particle size of the molecular sieve are such that the layer thickness is at least twice the particle size, resulting in a layer several particles thick rather than a monolayer of particles.

Advantageously, the layer is substantially free of pinholes, i.e., substantially free from apertures of greatest dimension greater than 0.1 .mu.m. Advantageously, at most 0.1% and preferably at most 0.0001% of the surface area is occupied by such apertures.

Depending on the intended end use of the layer, a greater or smaller proportion of the area of the layer may be occupied by macropores, apertures having a greatest dimension less than 0.1 .mu.m but greater than 1 nm. These macropores may be formed by the interstices between the crystals of the molecular sieve, if the layer consists essentially of the molecular sieve, and elsewhere, if the layer comprises the molecular sieve and other components. Such layers may be used, inter alia, for ultrafiltration, catalytic conversion, and separations based on differences in molecular mass (Knudsen diffusion), and indeed for any processes in which a high surface area is important.

The layer advantageously has a large proportion of its area occupied by crystalline-bounded micropores, i.e., pores of a size between 0.2 and 1 nm, depending on the particular molecular sieve being employed. Pores of size within the micropore range result, for example, when the layer contains a component in addition to one derived from colloidal molecular sieve particles. In another embodiment especially suitable for ultrafiltration, the layer contains nanopores, i.e., pores of a size between 1 and 10 nm.

The layer support may be either non-porous or, preferably, porous, and may be continuous or particulate. As examples of non-porous supports there may be mentioned glass, fused quartz, and silica, silicon, dense ceramic, for example, clay, and metals. As examples of porous supports, there may be mentioned porous glass, sintered porous metals, e.g., steel or nickel (which have pore sizes typically within the range of 0.2 to 15 .mu.m), and, especially, an inorganic oxide, e.g., alpha-alumina, titania, an alumina/zirconia mixture, or Cordierite.

At the surface in contact with the layer, the support may have pores of dimensions up to 50 times the layer thickness, but preferably the pore dimensions are comparable to the layer thickness.

Advantageously, the support is porous alpha-alumina with a surface pore size within the range of from 0.08 to 10 .mu.m, preferably from 0.08 to 1 .mu.m, most preferably from 0.08 to 0.16 .mu.m, and advantageously with a narrow pore size distribution. The support may be multilayered; for example, to improve the mass transfer characteristics of the layer, only the surface region of the support in contact with the layer may have small diameter pores, while the bulk of the support, toward the surface remote from the layer, may have large diameter pores. An example of such a multilayer support is an alpha-alumina disk having pores of about 1 .mu.m diameter coated with a layer of alpha-alumina with pore size about 0.08 .mu.m.

The invention also provides a structure in which the support, especially a continuous porous support, has a molecular sieve layer on each side of the support, the layers on the two sides being the same or different.

The layer may, and for many uses advantageously does, consist essentially of the molecular sieve material, or it may be a composite of the molecular sieve material and intercalating material which is also inorganic. The intercalating material may be the material of the support. If the layer is a composite it may, as indicated above, contain macropores and/or micropores, bounded by molecular sieve portions, by portions of intercalating material, or by both molecular sieve and intercalating material. The material may be applied to the support simultaneously with or after deposition of the molecular sieve, and may be applied, for example, by a sol-gel process followed by thermal curing. Suitable materials include, for example, inorganic oxides, e.g., silica, alumina, and titania.

The intercalating material is advantageously present in sufficiently low a proportion of the total material of the layer that the molecular sieve crystals remain contiguous.

The invention further provides additional preferred processes for manufacturing a layer.

The present invention accordingly also provides a process for the manufacture of a layer comprising a crystalline molecular sieve on a porous support, which comprises pre-treating the porous support to form at a surface thereof a barrier layer, and applying to the support a reaction mixture comprising a colloidal suspension of molecular sieve crystals, having a mean particle size of at most 100 nm and advantageously a particle size distribution such that at least 95% of the particles have a size within .+-.15%, preferably .+-.10%, more preferably within .+-.7.5%, of the mean, colloidal silica and optionally an organic structure directing agent, to form a supported molecular sieve layer, and if desired or required activating the resulting layer.

Activation removes the template and can be achieved by calcination, ozone treatment, plasma treatment or chemical extraction such as acid extraction.

The invention also provides a supported layer formed by the process.

The barrier layer functions to prevent the water in the aqueous reaction mixture from preferentially entering the pores of the support to an extent such that the silica and zeolite particles form a thick gel layer on the support.

The barrier layer may be temporary or permanent. As a temporary layer, there may be mentioned an impregnating fluid that is capable of being retained in the pores during application of the reaction mixture, and readily removed after such application and any subsequent treatment.

As indicated below, spin coating is an advantageous technique for applying the reaction mixture to the support according to this and other aspects of the invention. The impregnating fluid should accordingly be one that will be retained in the pores during spinning if that technique is used; accordingly the rate of rotation, pore size, and physical properties of the fluid need to be taken into account in choosing the fluid.

The fluid should also be compatible with the reaction mixture, for example if the reaction mixture is polar, the barrier fluid should also be polar. As the reaction mixture is advantageously an aqueous reaction mixture, water is advantageously used as the barrier layer.

To improve penetration, the fluid barrier may be applied at reduced pressure or elevated temperature. If spin-coating is used, the support treated with the barrier fluid is advantageously spun for a time and at a rate that will remove excess surface fluid, but not remove fluid from the pores. Premature evaporation of fluid from the outermost pores during treatment may be prevented by providing an atmosphere saturated with the liquid vapour.

As a temporary barrier layer suitable, for example, for an alpha-alumina support there may be especially mentioned water or glycol. As a permanent barrier suitable for an alpha-alumina support there may be mentioned titania, gamma-alumina or an alpha-alumina coating of smaller pore size.

The colloidal suspension of molecular sieve crystals is advantageously prepared by the process indicated above, i.e., that described in PCT Application EP/92/02386. The colloidal silica may be prepared by methods known in the art; see for example Brinker and Scherer, Sol-Gel Science, Academic Press, 1990. A preferred method is by the acid hydrolysis of tetraethyl orthosilicate. The organic structure directing agent, if used, is advantageously one of those mentioned above.

As indicated above, the reaction mixture is advantageously applied to the support by spin-coating, the viscosity of the mixture and the spin rate controlling coating thickness. The mixture is advantageously first contacted with the stationary support, then after a short contact time the support is spun at the desired rate. After spinning, the silica is advantageously aged by retaining the supported layer in a high humidity environment, and subsequently dried, advantageously first at room temperature and then in an oven.

In a further embodiment of the invention, there is provided a process for the manufacture of a layer comprising a crystalline molecular sieve on a porous support which comprises applying to the support by dip-coating a colloidal suspension of molecular sieve crystals, having a mean particle size of at most 100 nm and advantageously a particle size distribution such that at least 95% of the particles have a size within .+-.15%, preferably .+-.10%, more preferably .+-.7.5%, of the mean, drying the resulting gel on the support and if desired or required activating the resulting layer.

The invention also provides a layer made by the process.

In this embodiment of the invention, the pH of the suspension is an important factor. For example, at a pH above 12 colloidal silicalite crystals tend to dissolve in the medium. Adhesion of the layer to the support improves as pH is reduced, with acceptable adhesion being obtained between pH 7 and 11 good adhesion between pH 4.0 and 7 and very good adhesion below pH 4.0 although agglomeration of particles may occur at too low a pH.

Adhesion of the layer to its support may be enhanced by the inclusion in the suspension of an organic binder or surfactant, the presence of an appropriate proportion of which may also reduce the incidence of cracks in the final layer. Among binders there may be mentioned polyvinyl alcohol (PVA), advantageously with a molecular weight of from 1000 to 100000 preferably from 2000 to 10000 and most preferably in the region of 3000 and hydroxyalkyl cellulose, especially hydroxypropyl cellulose (HPC), advantageously with a molecular weight of from 50000 to 150000 and preferably in the region of 100000.

An appropriate proportion of crystals in the suspension may readily be determined by routine experiment; if the proportion is too low a continuous layer will not be reliably formed while if it is too high the layer will tend to contain cracks after activation. For silicalite, advantageous lower and upper limits are 0.5% (preferably 0.75%) and 1.5% respectively.

The time spent by the support immersed in the suspension also affects the thickness of the layer and its quality. Advantageously the dip-time is at most 15 seconds with a solution containing 1.1% by weight silicalite crystals; an immersion of from 1 to 10 seconds gives a crack-free layer of thickness 0.7 to 3 .mu.m.

In our co-pending Application No. PCT/EP92/02330 the entire disclosure of which is incorporated by reference herein, there is disclosed the formation of an aqueous synthesis mixture comprising a source of particulate silica in which the particles advantageously have a mean diameter of at most 1 .mu.m, seeds of an MFI zeolite having a mean particle size of at most 100 nm in the form of a colloidal suspension, an organic structure directing agent, and a source of fluorine or of an alkali metal, the synthesis mixture having an alkalinity, expressed as a molar ratio of OH.sup.-:SiO.sub.2 of at most 0.1. Crystallization of this synthesis mixture produces very uniform, small, zeolite crystals. The proportion of seed, based on the weight of the mixture, is given as from 0.05 to 1700 wppm. The synthesis mixture will additionally contain a source of any other zeolite component.

In a further embodiment of the present invention, a seeding technique may be used. In this embodiment, the invention provides a process for the manufacture of a layer comprising a crystalline molecular sieve on a porous support, which comprises applying to or forming on the support a layer comprising amorphous silica containing seeds of a zeolite having a mean particle size of at most 100 nm, and advantageously having a particle size distribution such that at least 95% of the particle have a size within .+-.15%, preferably .+-.10%, more preferably within .+-.7.5%, of the mean, subjecting the layer to hydrothermal crystallization, and if desired or required activating the crystallized layer.

Again, other components useful in forming the zeolite layer may be present. Such components may include, for example, an organic structure directing agent, which may be in salt form.

The invention also provides a supported layer made by the process.

The layer is advantageously applied to or formed on the support by dipcoating or spincoating, advantageously substantially as described above.

If dipcoating is used, the support is advantageously dipped into a solution containing the amorphous silica in colloidal form, advantageously with a particle size at most 0.1 .mu.m; the solution may if desired contain other components useful in forming the final zeolite layer. If spincoating is used, the silica may be of larger particle size but is advantageously colloidal.

The layer thickness at this stage, after dipcoating or spincoating, is advantageously within the range of from 0.1 to 20 .mu.m.

Hydrothermal crystallization to form the zeolite layer is advantageously carried out by immersing the layer in a solution described below, and heating for a time and at the temperature necessary to effect crystallization.

The solution advantageously contains either all the components necessary to form a zeolite or only those components necessary but which are not already present in the layer on the support. In the latter case, crystals do not form in the solution, which remains clear and may be re-used.

After crystallization, the supported layer may be washed, dried, and calcined in the normal way.

By this embodiment of the invention, a dense, homogeneous, and crack-free supported layer may be obtained. A 1 .mu.m thick zeolite layer may readily be obtained, with a grain size of 100 to 300 nm.

In a further embodiment of the invention, molecular sieve crystals are synthesized in situ on the support. According to this embodiment, the invention provides a process for the manufacture of a layer comprising a crystalline molecular sieve on a porous support, which comprises preparing a synthesis mixture comprising a source of silica and an organic structure directing agent preferably in the form of a hydroxide in a proportion sufficient to effect substantially complete dissolution of the silica source in the mixture at the boiling temperature of the mixture, immersing the support in the synthesis mixture, crystallizing zeolite from the synthesis mixture onto the support, and if desired or required activating the crystallized layer.

The invention also provides a supported layer made by the process.

The synthesis mixture will also contain a source of other components, if any, in the zeolite.

Advantageously, to obtain colloidal material, crystallization is effected at a temperature less than 120.degree. C. As indicated in PCT/EP92/02386 the lower the crystallization temperature the smaller the resulting particle size of the crystals. For zeolites made in the presence of an alumina source, the particle size may also be varied by varying the alumina content. The effect of varying the alumina content is, however, not the same for all zeolites; for example, for zeolite beta, the particle size varies inversely with alumina content while for an MFI-structured zeolite the relationship is direct.

The substrate used in accordance with this aspect of the invention may be any one of those described above in connexion with other processes; an alpha-alumina support is advantageously used; the pore size may vary with the intended use of the layer; a pore size within the range 100 nm to 1.5 .mu.m may conveniently be used. Care should be taken to avoid undue weakening of the support by for example, controlling prolonged exposure to high temperature and alkalinity.

Although the various processes of the invention described above yield a supported layer of good quality, the resulting layer may still contain apertures of greater size than desired for the intended use of the product. For example, apertures greater than those through the molecular sieve itself are undesirable if the supported layer is to be used for certain types of separation process since they result in a flux greater than desired and impaired separation. If this is the case, the supported layer may be subjected to a reparation procedure. In this procedure, the supported layer may be subjected to one of the various reparation techniques known to those skilled in the art.

It is therefore in accordance with the invention to manufacture a supported layer by first carrying out one of the layer-forming processes according to the invention and described above and following it by reparation of the layer by a method known per se.

Preferably, however, the reparation is carried out by again subjecting the supported layer to a manufacturing process of the invention.

The invention accordingly also provides a process for the manufacture of a supported layer in which one of the layer-forming processes above is carried out two or more times, or in which one of the processes above carried out one or more times is followed by another of the processes above, carried out one or more times, or in which one of the processes above is carried out two or more times with another or others of the processes above, carried out one or more times, intervening. The invention also provides a supported layer, especially a membrane, made by such a process.

The layers according to the invention and produced in accordance with the processes of the invention may be treated in manners known per se to adjust their properties, e.g., by steaming or ion exchange to introduce different cations or anions, by chemical modification, e.g., deposition of organic compounds on the crystals or into the pores of the molecular sieve, or by introduction of a metal.

The layers may be used in the form of a membrane, used herein to describe a barrier having separation properties, for separation of fluid (gaseous, liquid, or mixed) mixtures, for example, separation of a feed for a reaction from a feedstock mixture, or in catalytic applications, which may if desired combine catalysed conversion of a reactant or reactants and separation of reaction products.

Separations which may be carried out using a membrane comprising a layer in accordance with the invention include, for example, separation of normal alkanes from co-boiling hydrocarbons, for example normal alkanes from isoalkanes such as C.sub.4 to C.sub.6 mixtures and n-C.sub.10 to C.sub.16 alkanes from kerosene; separation of aromatic compounds from one another, especially separation of C.sub.8 aromatic isomers from each other, more especially para-xylene from a mixture of xylenes and, optionally, ethylbenzene, and separation of aromatics of different carbon numbers, for example, mixtures of benzene, toluene, and mixed C.sub.8 aromatics; separation of aromatic compounds from aliphatic compounds, especially aromatic molecules with from 6 to 8 carbon atoms from C.sub.5 to C.sub.10 (naphtha range) aliphatics; separation of olefinic compounds from saturated compounds, especially light alkenes from alkane/alkene mixtures, more especially ethene from ethane and propene from propane; removing hydrogen from hydrogen-containing streams, especially from light refinery and petrochemical gas streams, more especially from C.sub.2 and lighter components; and alcohols from aqueous streams.

Separation of heteroatomic compounds from hydrocarbons such as alcohols and sulphur containing materials such as H.sub.2S and mercaptans.

The supported layer of the invention may be employed as a membrane in such separations without the problem of being damaged by contact with the materials to be separated. Furthermore, many of these separations are carried out at elevated temperatures, as high as 500.degree. C., and it is an advantage of the supported layer of the present invention that it may be used at such elevated temperatures.

The present invention accordingly also provides a process for the separation of a fluid mixture which comprises contacting the mixture with one face of a layer according to the invention in the form of a membrane under conditions such that at least one component of the mixture has a different steady state permeability through the layer from that of another component and recovering a component or mixture of components from the other face of the layer.

Some specific reaction systems where these membranes would be advantageous for selective separation either in the reactor or on reactor effluent include: selective removal of a Para-Xylene rich mixture from the reactor, reactor product, reactor feed or other locations in a Xylenes isomerization process; selective separation of aromatics fractions or specific aromatics molecule rich streams from catalytic reforming or other aromatics generation processes such as light alkane and alkene dehydrocyclization processes (e.g. C.sub.3 C.sub.7 paraffins to aromatics from processes such as Cyclar), methanol to gasoline and catalytic cracking processes; selective separation of benzene rich fractions from refinery and chemical plant streams and processes; selective separation of olefins or specific olefin fractions from refinery and chemicals processing units including catalytic and thermal cracking, olefins isomerization processes, methanol to olefins processes, naphtha to olefins conversion processes, alkane dehydrogenation processes such as propane dehydrogenation to propylene; selective removal of hydrogen from refinery and chemicals streams and processes such as catlytic reforming, alkane dehydrogenation, catalytic cracking, thermal cracking, light alkane/alkene dehydrocyclization, ethylbenzene dehydrogenation, paraffin dehydrogenation; selective separation of molecular isomers in processes such as butane isomerization, butylene isomerization, paraffin isomerization, olefin isomerization; selective separation of alcohols from aqueous streams and/or other hydrocarbons; selective separation of products of bimolecular reactions where equilibrium limits conversion to the desired products, e.g. MTBE production from methanol and isobutylene, ethylbenzene from ethylene and benzene, and cumene from propylene and benzene; selective removal of 26 dimethyl naphthalene from mixtures of alkane substituted naphthalenes during alkylation and/or isomerization.

The invention further provides a process for catalysing a chemical reaction which comprises contacting a feedstock with a layer according to the invention which is in active catalytic form under catalytic conversion conditions and recovering a composition comprising at least one conversion product.

The invention further provides a process for catalysing a chemical reaction which comprises contacting a feedstock with one face of a layer according to the invention, that is in the form of a membrane and in active catalytic form, under catalytic conversion conditions, and recovering from an opposite face of the layer at least one conversion product, advantageously in a concentration differing from its equilibrium concentration in the reaction mixture.


Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
Synthesis of molecular sieve catalysts
Process for synthesis of high-silica silicate molecular sieve
Inorganic composite membrane comprising molecular sieve crystals
Lithium-aluminum-phosphorus-silicon-oxide molecular sieve compositions
Molecular sieve type gas separation systems
Molecular sieve layers and processes for their manufacture
Process for production of molecular sieve adsorbent blends
Molecular sieve compositions, catalyst thereof, their making and use in conversion processes

PAT. NO. Title
7094389 Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
7091385 Acylation using molecular sieve SSZ-71
7087792 Partial oxidation using molecular sieve SSZ-71
7087779 Aldehyde conversion method using a molecular sieve and the use of the molecular sieve as a catalyst in said method
7084305 Partial oxidation using molecular sieve SSZ-70
7084304 Acylation using molecular sieve SSZ-70
6812372 Silicoaluminophosphate molecular sieve
6812187 Carbon molecular sieve and method for manufacturing the same
6800266 Process for the preparation of hybrid mesoporous molecular sieve silicas from amine surfactants
6797854 Process for drying a gaseous or liquid mixture with the aid of an adsorber composed of alumina and of a molecular sieve
6797852 Protecting catalytic activity of a SAPO molecular sieve
6797248 Mesoporous molecular sieve and a process for the preparation of the same
6790672 Encoded molecular sieve particle-based sensors
6787501 Molecular sieve catalyst composition, its making and use in conversion processes
6776973 Using molecular sieve SSZ-63 for reduction of oxides of nitrogen in a gas stream
6743745 Process for production of molecular sieve adsorbent blends
6733742 Molecular sieve SSZ-63 composition of matter and synthesis thereof
6730364 Preparation of carbon molecular sieve membranes on porous substrate
6710008 Method of making molecular sieve catalyst
6689195 Crystalline molecular sieve layers and processes for their manufacture
6667266 Method for impregnation of molecular sieve-binder extrudates
6639117 Rejuvenating SAPO molecular sieve by freeze drying
6607705 Process for the preparation of molecular sieve silicas

Copyright © 2006 - 2015 Patent Information Search